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Outline for Today

● Bijections
● A key and important class of functions.

● Cardinality, Formally
● What does it mean for two sets to have the same size?

● Cantor’s Theorem, Formally
● Revisiting our Day 1 lecture.
● Further exploration: On the problem set, you’ll explore 

the proof in more depth and see some other applications.
● Further reading: Guide to Cantor’s Theorem, on the 

course website



  

Bijections



  

Injections and Surjections

● An injective function associates at most 
one element of the domain with each 
element of the codomain.

● A surjective function associates at least 
one element of the domain with each 
element of the codomain.



  

Injections and Surjections

● An injective function associates at most 
one element of the domain with each 
element of the codomain.

● A surjective function associates at least 
one element of the domain with each 
element of the codomain.

● New! A bijective function associates 
exactly one element of the domain with 
each element of the codomain.



  

Bijections

● A bijection is a function that is both 
injective and surjective.

● Intuitively, if f : A → B is a bijection, then 
f represents a way of pairing off elements 
of A and elements of B.
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Cardinality Revisited



  

Cardinality

● Recall (from our first lecture!) that the 
cardinality of a set is the number of elements 
it contains.

● If S is a set, we denote its cardinality by |S|.   



  

Comparing Cardinality

● Saying two finite sets are equal relies on a 
definition of “equal” for integers.
● |{1,2}| = 2 = 2 = |{3,6}| is true, because = is 

defined for integers 
● Defining “equal” for infinite set cardinality 

can’t rely on the integer “=” operator, because 
infinite values are not integers.

● Intuition: Two sets have the same cardinality 
if there’s a way to pair off their elements.



  

Comparing Cardinalities

● Here is the formal definition of what it means for 
two sets to have the same cardinality:

|S| = |T| if there exists a bijection f : S → T   



  

Comparing Cardinalities

● Here is the formal definition of what it means for 
two sets to have the same cardinality:

|S| = |T| if there exists a bijection f : S → T   



  

Comparing Cardinalities

● Here is the formal definition of what it means for 
two sets to have the same cardinality:

|S| = |T| if there exists a bijection f : S → T   

Not 
injective.

Not 
injective.

Not 
surjective.

Not 
surjective.



  

Comparing Cardinalities

● Here is the formal definition of what it means for 
two sets to have the same cardinality:

|S| = |T| if there exists a bijection f : S → T   

Yay, 
bijective!

Yay, 
bijective!



  

Fun with Cardinality



  

Terminology Refresher

● Let a and b be real numbers where a ≤ b.
● The notation [a, b] denotes the set of all 

real numbers between a and b, inclusive.

[a, b] = { x ∈ ℝ | a ≤ x ≤ b }
● The notation (a, b) denotes the set of all 

real numbers between a and b, exclusive.

(a, b) = { x ∈ ℝ | a < x < b }



  

Consider the sets [0, 1] and [0, 2].

How do their cardinalities compare?
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f : [0, 1] → [0, 2]
f(x) = 2x



  

Theorem: |[0, 1]| = |[0, 2]|

Proof: Consider the function f : [0, 1] → [0, 2] defined as f(x) = 2x.
We will prove that f is a bijection.

First, we will show that f is a well-defined function. Choose any 
x ∈ [0, 1]. This means that 0 ≤ x ≤ 1, so we know that 0 ≤ 2x ≤ 2. 
Consequently, we see that 0 ≤ f(x) ≤ 2, so f(x) ∈ [0, 2].

Next, we’ll show that f is injective. Pick any x₁, x₂ ∈ [0, 1] where 
f(x₁) = f(x₂). We will show that x₁ = x₂. To see this, notice that 
since f(x₁) = f(x₂), we see that 2x₁ = 2x₂, which in turn tells us 
that x₁ = x₂, as required.

Finally, we will show that f is surjective. To do so, consider any 
y ∈ [0, 2]. We’ll show that there is some x ∈ [0, 1] where f(x) = y.

Let x = y/2. Since y ∈ [0, 2], we know 0 ≤ y ≤ 2, and therefore that 
0 ≤ y/2 ≤ 1. We picked x = y/2, so we know that 0 ≤ x ≤ 1, which in 
turn means x ∈ [0, 1]. Moreover, notice that

f(x) = 2x = 2(y/₂) = y,

so f(x) = y, as required. ■
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of showing that it’s deterministic. Ah, 
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Some Properties of Cardinality



  

Theorem: For any set A, we have |A| = |A|.

Proof: Consider any set A, and let f : A → A be the function
defined as f(x) = x. We will prove that f is a bijection.

First, we’ll show that f is a well-defined function. To see this, 
note that for any x ∈ A, we have f(x) = x ∈ A, as needed.

Next, we’ll show that f is injective. Pick any x₁, x₂ ∈ A where 
f(x₁) = f(x₂). We need to show that x₁ = x₂. Since f(x₁) = f(x₂), 
we see by definition of f that x₁ = x₂, as required.

Finally, we’ll show that f is surjective. Consider any y ∈ A. We 
will prove that there is some x ∈ A where f(x) = y. Pick x = y. 
Then x ∈ A (since y ∈ A) and f(x) = x = y, as required. ■



  

Theorem: If A, B, and C are sets where |A| = |B| and |B| = |C|,
then |A| = |C|.

Proof: Consider any sets A, B, and C where |A| = |B| and |B| = |C|.
We need to prove that |A| = |C|. To do so, we need to show that
there is a bijection from A to C.

Since |A| = |B|, we know that there is a some bijection f : A → B. 
Similarly, since |B| = |C| we know that there is at least one 
bijection g : B → C.

Consider the function g ∘ f : A → C. Since g and f are bijections 
and the composition of two bijections is a bijection, we see that 
g ∘ f is a bijection from A to C. Thus |A| = |C|, as required. ■



  

Cantor’s Theorem Revisited



  

Cantor’s Theorem

● In our very first lecture, we sketched out 
a proof of Cantor’s theorem, which says 
that

If S is a set, then |S| < | (℘ S)|.
● Today, we finally have the tools to more 

formally prove that result, or more specifically, 
this version:

If S is a set, then |S| ≠ | (℘ S)|.



  

Bijection and Cardinality

● If we think this is true for some set S:

|S| ≠ | (℘ S)|
● Then we’re saying we don’t believe that 

there exists a bijection between S and 
(℘ S).

● Let’s explore one example function from 
S to (℘ S). 
● (remember: we aren’t expecting that this can 

be a bijection)  
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Bijection and Cardinality

● Ok we found one function f : S → (℘S), 
where f(x) = {x}, and showed that this 
function is not bijective.

● Question: Have we proved this? 

|S| ≠ | (℘ S)|
● Why or why not?



  

Bijection and Cardinality

● Ok we found one function f : S → (℘S), 
where f(x) = {x}, and showed that this 
function is not bijective.

● Question: Have we proved this? 

|S| ≠ | (℘ S)|
● Answer: No, because there could be 

some other function that is bijective.
● Remember our coins/fruit slide from 

earlier! 



  

If S is a set, then |S| ≠ | (℘ S)|.

● What would be a rigorous way to approach 
this?

1) Show that the function f : S → (S), where    ℘
f(x) = {x} is not bijective.

2) Pick an arbitrary function f : S → (S), and ℘
show f  is not injective.

3) Pick an arbitrary function f : S → (S), and ℘
show f  is not surjective. 



  

The Roadmap

● We’re going to prove this statement:

If S is a set, then |S| ≠ | (℘ S)|.
● Here’s how this will work:

● Pick an arbitrary set S.
● Pick an arbitrary function f : S → (℘ S).
● Show that f is not surjective using a diagonal 

argument.
● Conclude that there are no bijections from S to (℘ S).
● Conclude that |S| ≠ | (℘ S)|.
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The Diagonal Set

● For any set S and function f : S → (℘ S), we 
can define a set D as follows:

D = { x ∈ S | x ∉ f(x) }

(“The set of all elements x where x is
not an element of the set f(x).”)

● This is a formalization of the set we found in 
the previous picture.

● Using this choice of D, we can formally 
prove that no function f : S → (℘ S) is a 
bijection.



  

  Theorem: If S is a set, then |S| ≠ | (℘ S)|.
   

  Proof: Let S be an arbitrary set. We will prove that |S| ≠ | (℘ S)| by showing that
there are no bijections from S to (℘ S). To do so, choose an arbitrary function
f : S → (℘ S). We will prove that f is not surjective.

   

Starting with f, we define the set
   

        D = { x ∈ S | x ∉ f(x) }. (1)
   

We will show that there is no y ∈ S such that f(y) = D. To do so, we proceed
by contradiction. Suppose that there is some y ∈ S such that f(y) = D. By
the definition of D, we know that

   

y ∈ D iff y ∉ f(y). (2)
   

By assumption, f(y) = D. Combined with (2), this tells us
   

  y ∈ D iff y ∉ D. (3)
   

This is impossible. We have reached a contradiction, so our assumption must
have been wrong. Therefore, there is no y ∈ S such that f(y) = D, so f is not
surjective. This means that f is not a bijection, and since our choice of f
was arbitrary, we conclude that there are no bijections between S and (℘ S).
Thus |S| ≠ | (℘ S)|, as required. ■
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    y ∈ D if and only if y ∉ D. (3)
   

This is impossible. We have reached a contradiction, so our assumption must
have been wrong. Therefore, there is no y ∈ S such that f(y) = D, so f is not
surjective. This means that f is not a bijection, and since our choice of f
was arbitrary, we conclude that there are no bijections between S and (℘ S).
Thus |S| ≠ | (℘ S)|, as required. ■



  

  Theorem: If S is a set, then |S| ≠ | (℘ S)|.
   

  Proof: Let S be an arbitrary set. We will prove that |S| ≠ | (℘ S)| by showing that
there are no bijections from S to (℘ S). To do so, choose an arbitrary function
f : S → (℘ S). We will prove that f is not surjective.

   

Starting with f, we define the set
   

        D = { x ∈ S | x ∉ f(x) }. (1)
   

We will show that there is no y ∈ S such that f(y) = D. To do so, we proceed
by contradiction. Suppose that there is some y ∈ S such that f(y) = D. By
the definition of D, we know that

   

    y ∈ D if and only if y ∉ f(y). (2)
   

By assumption, f(y) = D. Combined with (2), this tells us
   

    y ∈ D if and only if y ∉ D. (3)
   

This is impossible. We have reached a contradiction, so our assumption must
have been wrong. So f is not surjective, which is what we wanted to show.■ 

■



  

Next Time

● Graphs
● A ubiquitous, expressive, and flexible 

abstraction!
● Properties of Graphs

● Building high-level structures out of lower-
level ones!
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